U/

<7+ MARRI LAXMAN REDDY

g 5
£ z INSTITUTE OF TECHNOLOGY AND MANAGEMENT
= § (AN AUTONOMOUS INSTITUTION)
¥ _"' (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
MLRS Accredited by NBA and NAAC with ‘A’ Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

DEPARTMENT MECHANICAL ENGINEERING

PYTHON PROGRAMING
LAB MANUAL

SUBJECT NAME Python Programming Lab

SUBJECT CODE 2030575
COURSE-BRANCH B. Tech - Mechanical Engineering

YEAR-SEMESTER II -1
ACADEMIC YEAR 2021-2022

REGULATION MLRS-R20

MARRI LAXAMAN REDDY

INSTITUTE OF TECHNOLOGY AND MANAGEMENT

MISSION AND VISION OF THE INSTITUTE:
Our Vision:

To establish as an ideal academic institution in the service of the nation the world and the humanity
by graduating talented engineers to be ethically strong globally competent by conducting high
quality research, developing breakthrough technologies and disseminating and preserving
technical knowledge.

Our Mission:
To fulfill the promised vision through the following strategic characteristics and aspirations:

o Contemporary and rigorous educational experiences that develop the engineers and
managers;

e Anatmosphere that facilitates personal commitment to the educational success of students
in an environment that values diversity and community;

e Prudent and accountable resource management;

o Undergraduate programs that integrate global awareness, communication skills and team
building across the curriculum;

o Leadership and service to meet society’s needs;

o Education and research partnerships with colleges, universities, and industries to graduate
education and training that prepares students for interdisciplinary engineering research and
advanced problem solving;

o Highly successful alumni who contribute to the profession in the global society.
Vision and Mission statements of the Department of Mechanical Engineering:
Vision Statement:

“The Mechanical Engineering Department strives immense success in the field of education,
research and development by nurturing the budding minds of young engineers inventing sets of
new designs and new products which may be envisaged as the modalities to bring about a green
future for humanity”

Mission Statement:

1. Equipping the students with manifold technical knowledge to make them efficient and
independent thinkers and designers in national and international arena.

2. Encouraging students and faculties to be creative and to develop analytical abilities and
efficiency in applying theories into practice, to develop and disseminate new knowledge.

3. Pursuing collaborative work in research and development organizations, industrial
enterprises, Research and academic institutions of national and international, to introduce
new knowledge and methods in engineering teaching and research in order to orient young
minds towards industrial development.

PROGRAM EDUCATIONAL OBJECTIVE

PEO 1: Graduates shall have knowledge and skills to succeed as Mechanical engineer’s for
their career development.

PEO 2: Graduates will explore in research.

PEO 3: Mechanical Graduates shall have the ability to design products with various
interdisciplinary skills

PEO 4: Graduates will serve the society with their professional skills

PROGRAM OUTCOMES

A

Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals and an engineering specialization for the solution of complex engineering
problems.

Problem Analysis: Identify, formulate, research, review the available literature and analyze
complex engineering problems reaching substantiated conclusions using first principles of
mathematics, natural science and engineering sciences.

Design and development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specific needs with appropriate
considerations for public health safety and cultural, societal and environmental
considerations.

Conduct investigations of complex problems: Use research based knowledge and research
methods including design of experiments, analysis and interpretation of data and synthesis
of the information to provide valid conclusions.

Modern tool usage: Create, select and apply appropriate techniques, resources and modern
engineering and IT tools including predictions and modeling to complex engineering
activities with an understanding of the limitations.

The Engineer and society: Apply reasoning, informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practices.

Environment and sustainability: Understand the impact of the professional engineering
solutions in society and environmental context and demonstrate the knowledge of and need
for sustainable development.

Ethics: Apply ethical principles and commitment to professional ethics, responsibilities
and norms of the engineering practice.

Individual and team work: Function effectively as an individual and as a member or leader
in diverse teams and in multi-disciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with the society at large, such as being able to comprehend,
write effective reports, design documentation, make effective presentations, give and
receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

Life — long learning: Recognize the need and have the preparation, ability to engage in
independent and life — long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES:

PSO1:

Students acquire necessary technical skills in mechanical engineering that make them

employable graduate.
PSO2: An ability to impart technological inputs towards development of society by becoming an
entrepreneur.

COURSE OBJECTIVES:

1. To understand the basic principles of fluid mechanics.

2. To identify various types of flows.

3. To understand boundary layer concepts and flow through pipes.

4. To evaluate the performance of hydraulic turbines.

5. To understand the functioning and characteristic curves of pumps.

COURSE OUTCOMES:

ME 272.1 To analyze and solve electrical circuits using network laws and theorems.
ME 272.2 To understand and analyze basic Electric and Magnetic circuits.

ME 272.3 To study the working principles of Electrical Machines.

ME 272.4 To introduce components of Low Voltage Electrical Installations.

ME 272.5 To identify and characterize diodes.

ME 272.6 To identify and characterize various types of transistors.

N

10.

11.

INSTRUCTIONS TO THE STUDENTS

Every student should obtain a copy of the laboratory manual

It is important that all students arrive at each session on time.

Dress code: Students must come to the laboratory wearing:

Trousers.

half-sleeve tops.

Leather shoes.

Half pants, loosely hanging garments and slippers are not allowed.

Students should come with thorough preparation for the experiment to be conducted.
Students will not be permitted to attend the laboratory unless they bring the practical
record fully completed in all respects pertaining to the experiment conducted in the
previous class.

Experiment should be started only after the staff-in-charge has checked the experimental
setup.

All the calculations should be made in the observation book. Specimen calculations for one
set of readings have to be shown in the practical record.

Wherever graphs are to be drawn, A-4 size graphs only should be used and the same should
be firmly attached to the practical record.

Practical record and observation should be neatly maintained.

They should obtain the signature of the staff-in-charge in the observation book after
completing each experiment.

Theory regarding each experiment should be written in the practical record before
procedure in your own words.

LABORATORY SAFETY PRECAUTIONS

Laboratory uniform, shoes & safety glasses are compulsory in the lab.

Do not touch anything with which you are not completely familiar. Carelessness may not
only break the valuable equipment in the lab but may also cause serious injury to you and
others in the lab.

Please follow instructions precisely as instructed by your supervisor. Do not start the
experiment unless your setup is verified & approved by your supervisor.

Do not leave the experiments unattended while in progress.

Do not crowd around the equipment’s & run inside the laboratory.

During experiments material may fail and disperse, please wear safety glasses and maintain
a safe distance from the experiment.

If any part of the equipment fails while being used, report it immediately to your supervisor.
Never try to fix the problem yourself because you could further damage the equipment and
harm yourself and others in the lab.

Keep the work area clear of all materials except those needed for your work and cleanup

after your work.

LIST OF EXPERIMENTS/DEMONSTRATIONS:

PART A: ELECTRICAL
1. Verification of KVL and KCL

2. (i) Measurement of VVoltage, Current and Real Power in primary and Secondary Circuits of a
Single-Phase Transformer

(i) Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta,
Delta- star, Star-Star) in a Three Phase Transformer

3. Measurement of Active and Reactive Power in a balanced Three-phase circuit
4. Performance Characteristics of a Separately Excited DC Shunt Motor
5. Performance Characteristics of a Three-phase Induction Motor
6. No-Load Characteristics of a Three-phase Alternator
PART B: ELECTRONICS
1. Study and operation of
(1) Multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv)CRO.
2. PN Junction diode characteristics
3. Zener diode characteristics and Zener as voltage Regulator
4. Input & Output characteristics of Transistor in CB / CE configuration
5. Full Wave Rectifier with & without filters

6. Input and Output characteristics of FET in CSconfiguration

_sWMROUG &

MARRI LAXMAN REDDY

(<]
f e - INSTITUTE OF TECHNOLOGY AND MANAGEMENT
% 'S (AN AUTONOMOUS INSTITUTION)
- i (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
MLRS Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act. 1956
CONTENTS
SI. No. EXPERIMENT NAME PAGE No.
1 PYTHON NUMBERS 1-7
2 CONTROL FLOWS
8-16
3 CONTROL FLOWS — CONTINUED
17-22
4 PYTHON SEQUENCES 23-28
29-33
5 PYTHON SEQUENCES
34-37
6 PYTHON SEQUENCES
FILES
7 38-42
8 FILES 4250
o | CONTINUED o156
10 FUNCTIONS 57-64
11 GUI, GRAHICS.
. 64-76

Exercise — 1 Python Numbers

1. Write a programme to determine whether the given year is leap year, using the
following formula: a leap year is one that is divisible by four, but not by one
hundred, unless it is also divisible by four hundred. For example, 1992, 1996 and
2000 are leap years, but 1967 and 1900 are not. The next leap year falling on a
century is 2400

Solution:

AlM:
To determine whether the given year is leap year or not
ALOGORITHM:

START

Step 1 — Take integer variable year

Step 2 — Assign value to the variable

Step 3 — Check if year is divisible by 4 but not 100, DISPLAY "leap year"
Step 4 — Check if year is divisible by 400, DISPLAY "leap year"

Step 5 — Otherwise, DISPLAY "not leap year"

STOP

FLOW CHART:

Start ()

tru € {y%4 == 0 & yi100 1_-__'3';"------___1_{3' e
T y3400 ==0__—
h h
Leap Year Not Leap

&
End I.\I,t_; {)’ |

SOURCE CODE:

n=int(input(‘enter any year:"))
if (N%4) ==0:

print(‘the year is a leap year’)
else:

print(‘the year is not a leap year’)
OUTPUT:
enter any year:1989

the year is not a leap year

(or)
SOURCE CODE:

Year=int(input("Enter Year: "))
if((Year % 400 ==0) or
(Year % 100!=0) and
(Year % 4 ==0)):
print("Given Year is a leap Year");
else it is not a leap year
else:
print ("Given Year is not a leap Year")
OUTPUT:
enter any year: 1989

the year is not a leap year

2. Write a program to determine the greatest common divisor and least common
multiple of a pair of integers
AlM:

To determine the greatest common divisor and least common multiple of a pair of integers

ALGORITHM:

START

Step 1 — Take integer variable number

Step 2 — Assign value to the variable number

Step 3 — Check if the number is gcd or Icm not

Step 4 — Check the number is having same pair of gcd and lcm or not
Stop

FLOW CHART:
Start with
xandy
<
4
NO X =Yy
y=07? >
Yy=X%Y |
VES
\ 4
Answer is X
SOURCE CODE:

19

numl=int(input(‘enter any value:'))
num2=int(input(‘enter any value:'))
a=numl
b=num2
lcm=0
while(num2!=0):
temp=num2
num2=num1%numz2
numl=temp
gcd=numl
Icm=((a*b)/gcd)
print(*\n gcd or hcf of*,a,"and",b"=",gcd)

print("\n Icm of",a,"and",b"=",lcm)
OUTPUT:

enter any value:48

enter any value:4

gcd or hef of 48 and b'="4
Icm of 48 and b'="48.0

3. Create a calculator application. Write a code that will take two numbers and
operator in the format. N1 OP N2, where N1 and N2 are floating point or integer
values, and OP is one of the following: +, -, *, /, %, **, representing addition,
subtraction, multiplication, division, modulus / remainder, and exponential,
respectively, and displays the result of carrying out that operation of the input
operands.

Hint: You may use the string split () method, but you cannot use the exal () built —in
function
AlIM:

To write a python program code of a calculator application that will take two numbers and
operator in the format.

ALGORITHM:

Step 1:Get input from the user (choice corresponding to various operations like addition,

subtraction, multiplication, division)

Step 2:Get two integer inputs from the user.

Step 3:Perform the operations based on the user's choice.
Step 4:Print the output

Step 5:End the program

FLOW CHART:

SOURCE CODE:

A=int(input('Enter your first number:"))
operator=input(‘which operation would you like to perform?(+, -, *, /,//,**):");
B=int(input('Enter your second number:'))
#Addition
if operator=="+":
ans=A+B
print(str(ans))
#Subtraction
elif operator=="-":
ans=A-B
print(str(ans))
#Division
elif operator=="/""
ans=A/B
print(str(ans))
#Multiplication

22

elif operator=="*"
ans=A*B
print(str(ans))
#Interdivision
elif operator=="//""
ans=A//B
print(str(ans))
#Exponent
elif operator=="**":
ans=A**B
print(str(ans))
else:
print(‘wrong answer")
OUTPUT:
Enter your first number:5
which operation would you like to perform?(+, -, *, /,//,**):/
Enter your second number:4

1.25

Exercise -2 Control Flows

1. Write a programme for checking whether the given number is prime or not?
AlM:

To write a python programme for checking whether the given number is prime or not

ALGORITHM:

Stepl: Start

Step2: [Accept a number] read n
Step3: Set i=2

Step4: Repeat steps 5 and 6 until i<n

Step5: [Check whether n is divisible or not]
if n%i==0 then
Gotostep 7
Else
Go to step 6

Step6: Seti=i+1
Step7: if i ==n then
print “number is prime”

Else
print “number is not prime”

Step8: Stop

FLOWCHART:

t "No. is Prime”

SOURCE CODE:

number = int(input("Enter any number: ™))

if number > 1:
for i in range(2, number):
if (number % i) == 0:

print(number, "is not a prime number")
break

else:

print(number, "is a prime number")
else:

25

is not Prime

print(number, "is not a prime number")
OUTPUT:
Enter any number: 58

58 is not a prime number

2. Write a program to print Fibonacci series up to given n values?
AlM:

To write a program to print Fibonacci series up to given n values

ALGORITHM:

Step 1: Start
Step 2: Declare variable a, b, ¢, n, i
Step 3: Initialize variable a=0, b=1 and =2
Step 4: Read n from user
Step 5: Printaand b
Step 6: Repeat until i<=n:
Step 6.1: c=a+b
Step 6.2: print c
Step 6.3: a=b, b=c
Step 6.4: i=i+1
Step 7: Stop

FLOWCHART:

P

Declare Variables i, n, a, b, sum

K-

Initialize a=0, b=1 and sum=0

/ Input the number to be printed /
/ The fibonacci Seriesis - ab /

K=

|

3

1

sum=a+b
a=h
b=sum, i++

print sum

SOURCE CODE:

n=int(input(“enter the number of terms needed in fibonacci series:"))

f1,£2=0,1

ifn==1:
print(fl)
elif n==2:

print(f1,",f2)

else:

28

print(f1,f2,end=")
for i in range(3,n+1):
f3=f1+f2
print(f3,end=")
f1=f2
f2=f3
OUTPUT:
enter the number of terms needed in fibonacci series:4

0,112

3. Write a program to calculate factorial of given integer number?
AlM:

To write a program to calculate factorial of given integer number

ALGORITHM:

Stepl: Start
Step2: Read number N
Step3: FACT=1 CTRL=1

Step4: While (CTRL<=N)
Do
Fact = Fact * i
CTRL=CTRL +1

Done
Step5: Display Fact
Step6: Stop

FLOWCHART:

Flowchart for Factorial Number

Yes

¥

[fact=fact™i

SOURCE CODE:

num=int(input('enter a number:"))
factorial = 1
if num<0:
print("Factorial does not exist for negative numbers')
elif num ==0:
print('The factorial of 0 is 1')

31

else:
for i in range(1,num+1):
factorial=factorial*i
print('The factorial of',num,'is',factorial)
OUTPUT:
enter a number:25

The factorial of 25 is 15511210043330985984000000

Exercise -3 Control Flows — Continued

1. Write a program to calculate value of the following series 1 — x + X2 — x3 + x4 -

To write a python program to cx2alculate value of the following series 1 — X + X2 — x3 + x4 -
... +Xxn

ALGORITHM:

Stepl: Start

Step2: Input value of N,X
Step3: 1=1,Sum =1, Term =1
Step4: If (I>N) then

Goto Step 9

ENDIF

Step5: Term =-Term * X
Step6: Sum = Sum + Term
Step7: 1=1+1

Step8: Go to Step - 4
Step9: Display value of Sum
Stepl0: Stop

FLOW CHART:

START

INPUT
X, N

51M

1l
=

ADD (-X)*I TO SUM |

ADD 1 TO I

NO

YES

FEINT
SUM /L STOP

x=float(input(‘enter base number:"))

SOURCE CODE:

n=int(input(‘'enter the power:"))

sum=1

for a in range(1,n+1):
sum=sum-+((-1)**a)*(x**a)

print('sum of the series is',sum)

OUTPUT:

enter base number:5

enter the power:4

sum of the series is 521.0

2. Write a program to print pascal triangle
AlM:

To write a python program to print pascal triangle

ALGORITHM:

Stepl: Start

Step2: Declare variables i,j,k

Step3: Enter the limits

Step4: Take a number of rows to be printed, let’s assume it to be n
Step5: Make outer iteration i from 0 to n times to print the rows.
Step6: Make inner iteration for j from 0 to (N — 1).

Step7: Print single blank space ” “.

Step8: Close inner loop (j loop) //its needed for left spacing.
Step9: Make inner iteration for j from 0 to i.

Step10: Print nCr of i and j.

Stepll: Close inner loop.

Step12: Print newline character (\n) after each inner iteration.
Stepl3: Stop

36

FLOW CHART:

cal — 1

L

"enter no.of rows "
GET rows

space «—— space + 1

L

A

PLUITT "U+1 cal ~— cal = (i -j + 123 .j

L

[]

I

j—3i+1

ie—i+ 1

PLIT " T

SOURCE CODE:

rows=int(input("Enter the number of rows:"))
for i in range(0,rows):
coff=1
for j in range(1,rows-i):
print(" ",end="")
for k in range(0,i+1):
print(" ",coff,end="")
coff=int(coff*(i-k)/(k+1))
print()
OUTPUT:
Enter the number of rows:8
1
11
121
1331
14641
15101051
1615201561
1721332171

Exercise -4 Python Sequences

1. Write a program to sort the numbers in ascending order and strings in reverse
alphabetical orders
AlM:

To write a python program to sort the numbers in ascending order and strings in reverse
alphabetical orders

ALGORITHM:

Stepl: Start

Step 2: Enter the array size and read as n.

Step 3: Enter the array elements and read as [i].

Step 4: Print the array elements before sorting.

Stepb5: After sorting, print the statement array elements.

Step6: Take 2 nested loops, take i variable in 1 loop, and j variable in 1 loop.
Step7: Check condition i> n in the I loop.

Step8: If the condition is false, go to the j loop. Go to the other end.

Step9: In j loop, check condition [j]>[a +] + 1].

Stepl0: If the condition is true, swap one [j] and one [j + 1]. Otherwise, go to the end.
Stepl1: Print the array elements [i].

Step 12: End

FLOW CHART:

39

PRINT LIST
¥
FOR
_I<10
+

~TEOR
~ ==l

+

~F
HSTU-LISTHE |

SWAP
LIST[] &
‘ LISTLJ]

——~
PRINT
SORTED LIST
+

e

-

sTOP

S e,

SOURCE CODE:

val=eval(input(‘enter a list:"))

val.sort()

print('sorted in ascending order:',val)
val.sort(reverse=True)

print('sorted in descending order:',val)

OUTPUT:

enter a list:[8,9,2,63,79,95,54]

sorted in ascending order: [2, 8, 9, 54, 63, 79, 95]
sorted in descending order: [95, 79, 63, 54, 9, 8, 2]

2. Given an integer value, return a string with the equivalent English text of each digit.
For example, an input of 89 results in “eight — nine” being returned. Write a
program to implement it

40

AlM:

To write a python program for an integer value, return a string with the equivalent English text of
each digit.

ALGORITHM:

Stepl: Start

Step2: Give the operands in the integer format

Step3: Enter the values either in Thousands or Hundreds or tens whatever you want

Step4: Select the values

Step5: The values you have to convert it into the string with the equivalent English text of each
digit.

Step6:Print the values in the string format

Step7:Stop

FLOW CHART:

SOURCE CODE:

test = input{"Iinput
a string: ")

| text = text strip() |

print("lnput a
valid text")

print{"The string
is an integer.")

i

all{text(i] in
"0123456789" fariin
range(len(text))) ¥

(text[0] in "+-") and

"0123456789" fariin
range(1 len(text))) 7

all{text[i] in

print("The string
is an integer.")

print("*The string is nat
an integer.")

End

number=["","One","Two","Three","Four","Five","Six","Seven","Eight","Nine"]
nty=["","","Twenty","Thirty","Fourty","Fifty","Sixty","Seventy","Eighty","Ninty"]

tens=["Ten","Eleven”,"Twelve","Thirteen","Fourteen","Fifteen","Sixteen","Seventeen","Eightee
n","Nineteen"]

n=int(input("Enter any number:"))
if n>99999:
print("cant solve for more than 5 digits™)
else:
d=[0,0,0,0,0]
i=0
while n>0:
d[i]=n%10
i+=1
n=n//10
num=""
if d[4]'=0:
if(d[4]==1):
num+=tens[d[3]]+"Thousand"
else:
num+=nty[d[4]]+""+number[d[3]]+"Thousand"
else:
if d[3]'=0:
num+=number[d[3]]+"Thousand"
if d[2]'=0:
num+=number[d[2]]+"Hundred"
if d[1]!=0:
if(d[1]==1):
num+=tens[d[0]]

else:

num+=nty[d[1]]+""+number[d[0]]
else:
if[d[0]]!=0:
num+=number[d[0]]
print(num)
OUTPUT:
Enter any number:89

Eighty-Nine

Exercise -5 Python Sequences

1. Write a python program to create a function that will return another string similar
to the input string, but with its case inverted. For example, input of “Mr.Ed” will
result in “mR.eD” as the output string

AlM:

To write a python program to create a function that will return another string similar to the input
string, but with its case inverted.

ALGORITHM:

Stepl:Start
Step2:Give the operands either string or integers

Step3:Select the operands either upper case, lower case, swap case, title
Step4:Stop

FLOW CHART:

print{string_reverse
("M234abcd))

def string_reverse(stri]

rstri ="
\E” index = len{str1)

Yes Mo

rstrl += str1[index - 1]
index = index - 1

3

SOURCE CODE:

strl=input(‘enter the string:")
print("1.upper 2.lower 3.swapcase 4.title")
n=int(input(‘select the operation:"))

if n==1:

print(strl.upper())
elif n==2:
print(strl.lower())
elif n==3:
print(strl.swapcase())
elif n==4:
print(strl.title())
else:
print(‘select the correct option’)
OUTPUT:
enter the string:Mr.Ed
1.upper 2.lower 3.swapcase 4.title
select the operation:3

MR.ED

2. Write a program to take a string and append a backward copy of that string,
making a palindrome

AlIM:

To write a python program to take a string and append a backward copy of that string making a
palindrome.

ALGORITHM:

Step 1: Start

Step 2: Read the string from the user

Step 3: Calculate the length of the string

Step 4: Initialize rev = “” [empty string]

Step 5: Initialize i = length - 1

Step 6: Repeat until i>=0:
6.1: rev = rev + Character at position 'i' of the string
6.2:i=i-1

Step 7: Print rev

Step 8: Stop

FLOW CHART:

C Start]
Read the string from the
user

v

Calculate the length of J

the string

v

Initialize rev as an
empty string

v

Initialize i = length - 1

v

rev = rev + character at

position ‘i’ of the string
Decrement ‘i by 1
Yes

MNo

h 4

[]
C=or

SOURCE CODE:

48

number=int(input(‘enter the string:"))
string=str(number)
rev_string=string[::-1]
print(‘reversed string:',rev_string)
if string==rev_string:

print(‘string is a palindrome’)
else:

print(‘string is not a palindrome’)
OUTPUT:
enter the string:1231
reversed string: 1321
string is not a palindrome
(or)
enter the string:1331
reversed string: 1331

string is a palindrome

Exercise -6 Python Sequences

1. Write a program to create dictionary and display its key alphabetically
AlIM:

To write a python program to create dictionary and display its keys alphabetically

ALGORITHM:

Stepl: Start

Step2: Create the dictionary values

Step3: Sorted the values of the dictionary items
Step4: Sorted the values

Step5: Stop

FLOW CHART:

| = input("Input a
letter aof the
alphabet: ")

print("%s is a
vawel." %)

print("Sometimes letter
y stand for vawel, print("%s I1s a
sometimes stand cansanant." % [)
far cansanant ")

St

End

SOURCE CODE:
d={2:3,1:89,64:5, 3:0}

od = sorted(d.items())

print(od)
OUTPUT:
[(1,89), (2, 3), (3,0), (4, 5)]

2. Write a program to take a dictionary as input and return one as output, but the
values are the keys and vice versa
AlIM:

To write a program to take a dictionary as input and return one as output, but the values are the
keys and vice versa.

ALGORITHM:

Stepl: Start

Step2: Create the dictionary values

Step3: Sorted the values of the dictionary items

Step4: Return the dictionary values as input and return the value as one input vice versa
Step5: Stop

FLOW CHART:

dic ={a"1,'n"
{et {d: {4

def dict_depth(d

isinstance(d, dict) ¥

| print(dict_depth(dic)) |
¥

End Yes
return 1 +
(max{map(dict_depth,
dwvalues())) if d else 0)
End
SOURCE CODE:

n=int(input(*'Input a number:"))
d=dict()
for x in range(1,n+1):
d[x]=x*x
print(d)
OUTPUT:

Input a number:25

{1:1,2:4,3:9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81, 10: 100, 11: 121, 12: 144, 13: 169, 14:
196, 15: 225, 16: 256, 17: 289, 18: 324, 19: 361, 20: 400, 21: 441, 22: 484, 23: 529, 24: 576, 25:
625}

Exercise 7 — Files

1. Write a program to compare two text files. If they are different, give the line and
column numbers in the files where the first difference occurs
AlM:

To Write a Python program to compare two text files. If they are different, give the line and
column numbers in the files where the first difference occurs.

ALGORITHM:

Stepl: Start

Step2: Take the text file and write whatever user wants the data
Step3: User is required to open the file

Step4: Compare the data from one file to another file.

Step5: Print the data step by step

Step6: Print the same data as the user wants

Step7: Stop

FLOW CHART:

User is required to open the Data
file

User is required to open the
Default Data file

User is required to open the
Output file to write to

-

."-

Program prompts user to search
for a string within the Data File.

b

=

"o

r -~
Program begins to search Data _~F the program
File for User’s String ganungt find the

string it will exit

RN I

Print the Data found by the User’s Compare the Default Data File
String into the Output File. with the Output File.

Print out the differences between
the Default Data File and Output
File.

SOURCE CODE:

fl=open(“filel.txt","r")
f2=open("file2.txt","r")
for linel in f1:
for line2 in f2:
if linel==line2:

print("SAME\n")

55

else:
print(linel+line2)
break
fl.close()
f2.close()
My filel.txt

for
foo
in
bar
print
foo

ook~ wdE

My file2.txt

1. while
2. foo
3. <

4. bar
5. print
6. foo

OUTPUT:

for
while

SAME

in
<

SAME
11. SAME

13. SAME

2. Write a program to compute the number of characters, words and lines in a file

AlM:

To write a Python program that to compute the number of characters, words and lines in a file.
ALGORITHM:

Stepl: Start
Step2: Open the text file and write the file whatever the user wants
Step3: Check whatever the lines, words, characters are to be count

Step4: Print the numbers of lines, words, characters that the user has to be given as input
Step5: Stop

FLOW CHART:

import collection

print{"lnput a text in a line.")

text list = list(map(str, input().split())

sc = collections. Counter{text_list)
common_woard = sc.most_common()[0][0]
rmax char=""

End for

print("inMost frequent text and the word
which has the maximum number of letters.")
printicammon_ward, max_char)

len{max_char) < len(s) ?

En

SOURCE CODE:

file = open("'sample.txt", "r")
number_of _lines =0
number_of words =0
number_of characters =0

for line in file:

line = line.strip("\n")
won't count \n as character
words = line.split()
number_of lines +=1
number_of_words += len(words)
number_of characters += len(line)
file.close()

print("lines:", number_of _lines, "words:", number_of words, "characters:",
number_of_characters)

OUTPUT:

lines: 3 words: 5 characters: 29

Exercise -8 Files

1. Write a function ball collide that takes two balls as parameters and computes if they
are colliding. Your function should return a Boolean representing whether or not
the balls are colliding.

Hint: Represent a ball on a plane tuple of (x,y,r), r being the radius

If (distance between two balls centres) <= (sum of radii) then (they are colliding)

AlM:

To Write a Python function ball collide that takes two balls as parameters and computes if they
are colliding. Your function should return a Boolean representing whether or not the balls are
colliding.

ALGORITHM:

Stepl: Start

Step2: Import math module

Step3: Read the values of x1,y1,r1,x2, y2and r2

Step4: Calculate the distance using the formulae math.sqrt((x2 - x1)**2 + (y2 - y1)**2) and
store the result in distance

Step5: Print distance

Step6: Stop.

FLOW CHART:

59

v

draw
background

'

draw ball at
(>, v)

w

add dx to x

w

add dy to y

!

negate dy

negate dy

gone off
left?

negate dx

negate dx

SOURCE CODE:

import math

def ball_collide(x1,y1,r1,x2,y2,r2):
dist=math.sqrt((x2-x1)**2+(y2-y1)**2);
print("Distance b/w two balls:",dist)
center=dist/2;

print("Collisison point"”, center);

60

r=ril+r2;
print("Sum of radius",r)
if(center<=r):
print("They are Colliding")
return True;
else:
print("Not Colliding™)
return False;
c= ball_collide(4,4,3,2,2,3)
print(c)
c= ball_collide(100,200,20,200,100,10)
print(c)
OUTPUT:
Distance b/w two balls: 2.8284271247461903
Collisison point 1.4142135623730951
Sum of radius 6
They are Colliding
True
Distance b/w two balls: 141.4213562373095
Collisison point 70.71067811865476
Sum of radius 30
Not Colliding

False

2. Find mean, median, mode for the given set of numbers in a list
AlIM:

To write a Python program that to find mean, median, mode for the given set of numbers in a list.

ALGORITHM:

Stepl: Start

Step2: Given the list of numbers as the user wants
Step3:Print Mean, Median and Mode

Step4:Stop

FLOW CHART:

Arrange numbers

in ascending order

-~

Write down
this number

-

Write down
the average of
the numbers

Delete the largest
<] number and the
smallest number

SOURCE CODE:

from statistics import mean, median, mode
i=[15,18,2,36,12,78,5,6,9,18]
print("Mean",mean(i))

print("Median",median(i))

62

print("Mode",mode(i))
OUTPUT:

Mean 19.9

Median 13.5

Mode 18

3. Write a simple functions max2() and min2() that take two items and return the
larger and smaller item, respectively. They should work arbitrary Python objects.
For example max2(4,8) and min2(4,8) would each return 8 and 4 respectively
AlM:

To write a simple Python program functions max2() and min2() that take two items and return
the larger and smaller item, respectively.

ALGORITHM:

Stepl:Start

Step2: Give the values the user wants
Step3: Select the max and min values
Step4: Print max and min values
Step5: Stop

FLOW CHART

list = [7,14,81,556,9,17,42]
w

min = list[0] L____ This will initialise the min value
to the first value of the list.

FOR i FROM 1
TO LENGTH(list)

IF
list[i]l < min

False

min = list[i]

w

/OUTPUT,"”,MI;?.' " nn'n;:/

-»

SOURCE CODE:

from operator import It
def max2(num1,num2):
ele=lt(num1,numz2)
if ele==True:
return num2
else:
return numl
def min2(num1,num2):
ele=It(num1,num2)
if ele==True:
return numl
else:
return num2

OUTPUT:
4.8
max value:8

min value:4

Exercise -9 Continued

1. Write a function nearly equal to test whether two strings are nearly equal. Two
strings a and b are nearly equal when a can be generated by a single mutation on b
AlM:

To write a python function nearly equal to test whether two strings are nearly equal that two
strings a and b are nearly equal when a can be generated by a single mutation on b

ALGORITHM:

Stepl: Start

Step2:_To compare two strings

Step3:_To compare two strings with form values enter by user
Step4: To compare two strings with the database.

Step5: Stop
FLOW CHART:
Start
1
Read Strings 51 & 52
!
— 81 == 53 —
b= o'[+]
Print Equal . Print Mot Equal
‘M"'\-\..__.. //
> Stop
SOURCE CODE:

def nearly_equal(strl,str2):

count=0

i=j=0

while(i<len(strl) and j<len(str2)):

if(strl[i]'=str2[j]):
count=count+1
if(len(strl)>len(str2)):
i=i+l

elif(len(strl)==len(str2)):

67

pass
else:
i=i-1
if(count>1):
return False
i=i+1
=i+l
if(count<2):

return True

strl=input("Enter first string::\n")
str2=input("Enter second string::\n")
boolean=nearly_equal(strl,str2)
if(boolean):

print("Strings are nearly equal.")
else:

print("Strings are not equal.")
OUTPUT:
Enter first string::
RISE
Enter second string::
RISEE

Strings are nearly equal.

2. Write a function to find dups to find all the duplicates in the list
AlIM:

To write a python function to find dups to find all the duplicates in the list

ALGORITHM:

Stepl: Start

Step2: Enter the Integers whatever the user wants
Step3: Enter the Duplicate elements for the list
Step4: Select the dups in the duplicate elements
Step5: To find the duplicate elements in the list
Step6: Print the dups in the duplicate elements
Step7: Stop

FLOW CHART:

a=[10.2030,201050,
&0 ,40,80 50 ,40]

dup_items = set()
unig_items =[]

Yes

unig_items. append(x) E@
dup items.add(x)

End faor

oy
| print{dup items)|

SOURCE CODE:

def dups(numlist):
duplicates={}
for ele in numlist:
c=numlist.count(ele)
if(c>=2):

duplicates[ele]=c

print("Duplicate elements are:\n",duplicates)
return

numlist=[]

n=int(input("Enter number of elements to be insert:\n"))

for i in range(n):
ele=int(input("Enter element™))
numlist.append(ele)

dups(numlist)

OUTPUT:

Enter number of elements to be insert:

5

Enter element?2

Enter element4

Enter element2

Enter element3

Enter element3

Duplicate elements are:

{2:2,3: 2}

3. Write a function unique to find all the unique elements in a list
AlM:

To write a python function unique to find all the unique elements in a list

ALGORITHM:

Stepl: Start

Step2: Enter the unique elements in the list
Step3: Define unique elements in the list
Step4: Append the unique elements in the list
Step5: Print the unique elements in the list

Step6:Stop
FLOW CHART:
End for
=)
Eny
SOURCE CODE:

def unique(numlist):
uniqueele=[]
for ele in numlist:
c=numlist.count(ele)
if(c==1):
uniqueele.append(ele)
print("Unique elements are:\n",uniqueele)

return

numlist=[]

n=int(input("Enter number of elements to be insert:\n"))
for i in range(n):
ele=int(input("Enter element™))
numlist.append(ele)
unique(numlist)
OUTPUT:
Enter number of elements to be insert:
5
Enter element2
Enter element3
Enter element4
Enter element3
Enter element5
Unique elements are:

[2, 4, 5]

Exercise -10 Functions — Problem Solving

1. Write a function to cumulative_product to compute cumulative product of a list of
numbers
AlM:

To write a python function to cumulative_product to compute cumulative product of a list of
numbers.

ALGORITH:

Stepl: Start

Step2: Enter the elements whatever the user wants
Step3: Cumulative product of an elements

Step4: Append the elements

Stepb5: Print the cumulative_product of the elements
Step6: Stop

FLOW CHART:

def nums_cumulative_
suminums_list)

print{nums_cumulative_surm
([10, 20, 30,
40, 80,60, 711

return [suminums_list[:i
) +11) for i in
5] rangeflen{nums_list))]

print{nums_cumulative_sum(]
print{nums_cumulative sum(]

B e

2,
1

— —

SOURCE CODE:

def cumulative_product(numlist):
product=1
cp=[l
for ele in numlist:
product=product*ele
cp.append(product)

return cp

numlist=[]
n=int(input("Enter number of elements to be insert:"))
for i in range(n):

ele=int(input("Enter element:"))

numlist.append(ele)
cp=cumulative_product(numlist)
print("Cumulative product of list elements is ,cp)
OUTPUT:
Enter number of elements to be insert:4
Enter element:3
Enter element:2
Enter element:4
Enter element:1

Cumulative product of list elements is [3, 6, 24, 24]

2. Write a function reverse to reverse a list. Without using the reverse function
AlM:

To write a python function that reverse to reverse a list without using the reverse function.

ALGORITHM:

Step 1:Start
Step 2: Read the string from the user

Step 3: Calculate the length of the string

Step 4: Initialize rev = “” [empty string]

Step 5: Initialize i = length - 1

Step 6:Repeat until i>=0:
6.1: rev = rev + Character at position 'i' of the string
6.2:1=1-1

Step 7: Print rev

Step 9: Stop

FLOW CHART:

T
Read the string from the
user

v

Calculate the length of J

the string

v

Initialize rewv as an
empty string

v

Initialize | = length - 1

revw — rew + character at

position ‘i" of the string
Decrement ‘i’ by 1]
YWes

MNo

v
/ Print rew /

C=or O
SOURCE CODE:

def reverse(numlist):
i=0
j=len(numlist)-1
while(i<=j):
temp=numlist[i]

numlist[i]=numlist[j]

76

numlist[j]=temp
i=i+1
=il
return
numlist=[]
n=int(input("Enter number of elements to be insert:"))
for i in range(n):
ele=int(input("Enter element:"))
numlist.append(ele)
reverse(numlist)
print("After reverse list elements are:\n",numlist)
OUTPUT:
Enter number of elements to be insert:4
Enter element:2
Enter element:3
Enter element:1
Enter element:5
After reverse list elements are:

[5,1,3 2]

3. Write function to compute gcd, lcm of two numbers. Each function shouldn’t exceed
one line
AlM:

To write a python function that to compute gcd, Icm of two numbers. Each function shouldn’t
exceed one line.

ALGORITHM:

Stepl: Start

Step2: Enter the numbers of GCD elements
Step3: Enter the numbers of LCM elements
Step4: Print GCD of two numbers

Step5: Print LCM of two numbers

Step6: Stop

FLOW CHART:

FUNCTION HCF(a,b)

temp = a
-
a = b
~
b = temp
WVWHILE
b = O
temp = b
-

b = a mod b

-

a = temp

RETURM a

-

SOURCE CODE:

gcd=lambda a,b: a if b==0 else gcd(b,a%b)
Icm=lambda a,b: (a*b)/gcd(a,b)
numl=int(input("Enter first number:"))

num2=int(input("Enter second number:"))

print("LCM of %d and %d is %d"%(num1,num2,Ilcm(numl,num2)))

print("GCD of %d and %d is %d"%(num1,num2,gcd(numl,num2)))

OQUTPUT:

Enter first number:8
Enter second number:24
LCMof 8 and 24 is 24
GCD of 8and 24 is 8

SOURCE CODE:

nl = int(input("Enter First number :"))
n2 = int(input("Enter Second number :"))
X=nl
y=n2
while(n2!=0):

t=n2

n2=nl% n2

nl=t
gced =nl

(or)

print("GCD of {0} and {1} = {2}".format(x,y,gcd))

Icm = (x*y)/gcd

print("LCM of {0} and {1} = {2}".format(x,y,Icm))

OUTPUT:

Enter First number :8

Enter Second number :24
GCDof8and 24 =8

LCM of 8 and 24 = 24.0
Exercise — 11 GUI, Graphics

1. Write a GUI for an Expression Calculator usingtk
AlM:

To write a Python program for GUI for an Expression Calculator usingtk

ALGORITHM:

Stepl: Start

Step2:_Every time application will open on the bottom right side.

Step3:The application will have a grey background in the display & black background in the
buttons.

Step4: The text color of the entire application will be white

Step5: A window will have a fixed size & can’t be resized.

Step6: The calculator will have the basic functionality of addition, subtraction, multiplication &
division.

Step7: Numbers will be displayed on the right side of the screen

Step8:Stop

FLOW CHART:

organise frames,

labels, buttons

send button
argument using
lambda to
display function

Yes

create functions
for performing
operation
depending upon
the operand

Addition,
Subtraction,
Multiplication &
division

SOURCE CODE:

Python program to create a simple GUI
calculator using Tkinter
import everything from tkinter module
from tkinter import *
globally declare the expression variable
expression ="
Function to update expression
in the text entry box
def press(num):

point out the global expression variable

global expression

82

concatenation of string
expression = expression + str(num)
update the expression by using set method
equation.set(expression)
Function to evaluate the final expression
def equalpress():
Try and except statement is used
for handling the errors like zero

division error etc.

Put that code inside the try block
which may generate the error
try:
global expression
eval function evaluate the expression
and str function convert the result
into string
total = str(eval(expression))
equation.set(total)
initialize the expression variable
by empty string
expression ="
if error is generate then handle
by the except block
except:
equation.set(" error ")
expression ="

Function to clear the contents

of text entry box

def clear():
global expression
expression ="'
equation.set("")

Driver code

if _name_ ==" main__ "™
create a GUI window

gui = Tk()

set the background colour of GUI window
gui.configure(background="light green")

set the title of GUI window

gui.title("Simple Calculator")

set the configuration of GUI window
gui.geometry("270x150")

StringVar() is the variable class

we create an instance of this class

equation = StringVar()

create the text entry box for

showing the expression .

expression_field = Entry(gui, textvariable=equation)
grid method is used for placing

the widgets at respective positions

in table like structure .
expression_field.grid(columnspan=4, ipadx=70)
create a Buttons and place at a particular

location inside the root window .

when user press the button, the command or
function affiliated to that button is executed .
buttonl = Button(gui, text="1", fg="black’, bg="red',

command=lambda: press(1), height=1, width=7)
buttonl.grid(row=2, column=0)
button2 = Button(gui, text="2 ", fg='black’, bg="red',

command=lambda: press(2), height=1, width=7)
button2.grid(row=2, column=1)
button3 = Button(gui, text=" 3", fg='black’, bg="red',

command=lambda: press(3), height=1, width=7)
button3.grid(row=2, column=2)
button4 = Button(gui, text="4", fg='black’, bg="red’,

command=lambda: press(4), height=1, width=7)
button4.grid(row=3, column=0)
button5 = Button(gui, text="5", fg='black’, bg="red’,

command=lambda: press(5), height=1, width=7)
button5.grid(row=3, column=1)
button6 = Button(gui, text="6 ', fg="black’, bg="red',

command=lambda: press(6), height=1, width=7)
button6.grid(row=3, column=2)
button7 = Button(gui, text="7 ', fg='black’, bg="red',

command=lambda: press(7), height=1, width=7)
button7.grid(row=4, column=0)
button8 = Button(gui, text="8", fg="black’, bg="red',

command=lambda: press(8), height=1, width=7)
button8.grid(row=4, column=1)
button9 = Button(gui, text="9 ', fg="black’, bg="red",

command=lambda: press(9), height=1, width=7)

button9.grid(row=4, column=2)
button0 = Button(gui, text="0", fg='black’, bg="red’,
command=lambda: press(0), height=1, width=7)
button0.grid(row=5, column=0)
plus = Button(gui, text="+ "', fg="black’, bg="red’,
command=lambda: press("+"), height=1, width=7)
plus.grid(row=2, column=3)
minus = Button(gui, text="- ", fg="black’, bg="red’,
command=lambda: press("-"), height=1, width=7)
minus.grid(row=3, column=3)
multiply = Button(gui, text="*"', fg="black’, bg="red',
command=lambda: press("*"), height=1, width=7)
multiply.grid(row=4, column=3)
divide = Button(gui, text="/", fg="black’, bg="red',
command=lambda: press("/"), height=1, width=7)
divide.grid(row=>5, column=3)
equal = Button(gui, text="=", fg="black’, bg="red',
command=equalpress, height=1, width=7)
equal.grid(row=5, column=2)
clear = Button(gui, text="Clear', fg='black’, bg="red',
command=clear, height=1, width=7)
clear.grid(row=>5, column='1")
Decimal= Button(gui, text=".", fg="black’, bg="red’,
command=lambda: press('."), height=1, width=7)
Decimal.grid(row=6, column=0)
start the GUI
gui.mainloop()

Output:

2. Write a program to implement the following figures using turtle

87

AlM:

To Write a Python program to implement the following figures using turtle.
ALGORITHM:

Stepl: Start

Step2: Making an angle from 0 to 180
Step3: Penup

Step4: Goto (0,0)

Step5: Making an angle

Step6: Forward (100) of an turtle
Step7: Pendown

Ste8: Forward(20) of an turtle

Step9: Stop

FLOW CHART:

FOR angle
FROM O TO 180
STEF 10

pPenup

i

goto(0,0)

il

setheading(angle}

-

forward{ 100}

-

pendown

i

forward{ 207

End

SOURSE CODE:

import turtle as tt

tt.bgcolor('black’)

tt.pensize(2)
tt.speed(10)
for i in range(6):
for color in (‘red’, 'magenta’, 'blue’,
‘cyan’, 'green’, ‘white’,
'yellow'):
tt.color(color)
tt.circle(100)
tt.left(10)
tt.hideturtle()

OUTPUT:

Vibrate Circle Source Code:

import turtle

t = turtle. Turtle()
s = turtle.Screen()
s.bgcolor("black™)
t.pencolor("red")
a=0

b=0

t.speed(0)
t.penup()

t.goto(0,200)
t.pendown()
while(True):
t.forward(a)
t.right(b)
a+=3
b+=1
if b ==210:
break
t.hideturtle()

turtle.done()

OUTPUT:

Python Turtle Graphics — O ot

	PYTHON PROGRAMING
	LAB MANUAL

